Math 847

Instructions: You must show all necessary work to get full or partial credits. You can use a 3×5 index card. You can not use your book, cell phone, computer, or other notes. Read all problems through once carefully before beginning work.

Notation: \mathbb{R}^{n} denotes the standard Euclidean space with $|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} . \Delta u(x)=\sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{j} \partial x_{j}}$ stands for the Laplace operator in \mathbb{R}^{n}. Ω is used for any open, bounded, and smooth domain in \mathbb{R}^{n} with $\partial \Omega$ as its boundary, and $\nu(x)$ is the unit out normal at $x \in \partial \Omega . \omega_{n}$ is the surface area for $S^{n-1}=\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}$.

Problem 1 Consider the first order equation $u_{t}(x, t)+2 t u_{x}(x, t)=u, x \in \mathbb{R}, t \in \mathbb{R}$. (a) Find a solution $u(x, t)$ with initial data $u(x, 0)=\sin x, x \in \mathbb{R}$.
(b) What is the characteristic curve starting from $x_{0}=0, t_{0}=0$? Can you find a C^{1} solution in a neighborhood of $(0,0)$ such that $u\left(s^{2}, s\right)=\cos s$? Explain your answer.

Problem 2 Let $\Omega=\left\{(x, y) \in R^{2} \mid\|(x, y)\|=\sqrt{x^{2}+y^{2}}<1\right\}$. Assume that u is a smooth function on $\bar{\Omega}$ such that

$$
\begin{cases}\Delta u=0, & (x, y) \in \Omega \\ u(x, y)=2 x^{2}-y^{2}+6 y, & x^{2}+y^{2}=1\end{cases}
$$

(a) What is $u(0,0)$? What theorem did you use?
(b) What is the maximum and minimum values of u on $\bar{\Omega}$? What theorem did you use?
(c) Find a point $\left(x_{0}, y_{0}\right)$ on $\partial \Omega$ such that $\frac{\partial u}{\partial \nu}\left(x_{0}, y_{0}\right)>0$? Briefly explain your answer, where ν is the unit outnormal at the point $\left(x_{0}, y_{0}\right)$.

Problem 3 Let $g(x)$ be a continuous function on $\mathbb{R}^{n}, 0<g(x) \leq 1$ for all $x \in \mathbb{R}^{n}$, and $\int_{\mathbb{R}^{n}} g(x) d x=1$. Consider the initial value problem

$$
\begin{cases}u_{t}(x, t)=\Delta u(x, t)-u, & x \in R^{n}, t>0, \\ u(x, 0)=g(x), & x \in R^{n} .\end{cases}
$$

(a) Prove that there is a solution $u(x, t)$ such that $0<u(x, t)<e^{-t} \min \left\{1, \frac{1}{(4 \pi t)^{n / 2}}\right\}$ for all $x \in \mathbb{R}^{n}$ and $t>0$.
(b) Can you find another different solution to the initial value problem? Briefly explain your answer.
(c) Can you find another different positive solution $u(x, t)$ to the initial value problem? Briefly explain your answer.
(d) For any continuous function $f(x, t)$ such that

$$
|f(x, t)| \leq 5, \quad x \in \mathbb{R}^{n}, t \geq 0
$$

prove that there is a bounded solution to the following non-homogeneous equation

$$
\begin{cases}u_{t}=\triangle u-u+f(x, t), & x \in R^{n}, t>0 \\ u(x, 0)=g(x), & x \in R^{n} .\end{cases}
$$

Problem 4 Let $u(x, y, z, t)$ be a solution of the initial value problem for the wave equation in $R^{3} \times R$

$$
\begin{cases}u_{t t}=u_{x x}+u_{y y}+u_{z z}, & (x, y, z) \in \mathbb{R}^{3}, t \in \mathbb{R} \\ u(x, y, z, 0)=0, & (x, y, z) \in \mathbb{R}^{3} \\ u_{t}(x, y, z, 0)=\frac{1}{\left(4+x^{2}+y^{2}+z^{2}\right)^{2}} & (x, y, z) \in \mathbb{R}^{3}\end{cases}
$$

(a) Find an explicit formula for $u(0,0,0, t)$. Briefly explain your answer.
(b) Find a solution of the form $u(x, y, z, t)=V(r, t)$ with $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
[Hint: Note that $W(r, t)=r V(r, t)$ satisfies $\left.W_{r r}=W_{t t}\right)$.]
(c) Check that $V(0, t)=u(0,0,0, t)$ you obtained from Parts (a) and (b).
(d) Is it possible that $u(x, t)$ such that $u(5,0,0,2)-u(0,3,4,2)=2$? Explain your answer.
(e) Prove that there is a constant $A>0$ such that

$$
F_{1}(t)=\int_{\mathbb{R}^{3}} u(x, t) d x=A t
$$

Problem 5 Consider the second order differential equation

$$
\begin{equation*}
\Delta u(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{3+\cos x_{1}+\sin \left(x_{1}+x_{2}+\ldots x_{n}\right)}{\left(1+|x|^{2}\right)^{n}}, x \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Note that $\frac{1}{\left(1+|x|^{2}\right)^{n}} \leq f(x) \leq \frac{5}{\left(1+|x|^{2}\right)^{n}}$.
(a) Prove that there are infinitely many solutions to this equation with $u(0)=1$ when $n \geq 3$.
(b) Prove that there is one and only one solution $u(x)$ such that $u(x)$ is bounded and $u(0)=1$ when $n \geq 3$.
(c) Let $g(r)=\int_{|y|=1} u(r y) d S_{y}$. Find $g^{\prime}(r)$ in terms of the integral of $f(x)$
(d) Prove that $g(r)$ is an increasing and bounded function for any solution $u(x)$ of (1) when $n \geq 3$ (even for unbounded solutions of (1).
(e) For $n=2$, prove that there is no bounded solution to (1) by showing that $\lim _{r \rightarrow \infty} g(r)=\infty$.

Problem 6 Consider the nonlinear heat equation

$$
\begin{cases}u_{t}=u_{x x}+u_{y y}-|D u|^{2}, & x^{2}+y^{2}<1, t>0 \\ u(x, y, 0)=\left(1-x^{2}-y^{2}\right)^{2}, & x^{2}+y^{2}<1 \\ u(x, y, t)+x u_{x}(x, y, t)+y u_{y}(x, y, t)=u+D u \cdot \nu=0, & x^{2}+y^{2}=1, t \geq 0\end{cases}
$$

(a) If $u(x, t)$ is a smooth solution of the equation, prove that u can not attain its positive maximum or negative minimum on the lateral boundary $x^{2}+y^{2}=1$.
(b) If $u(x, t)$ is a smooth solution of the equation, prove that

$$
0 \leq u(x, y, t) \leq 1 \text { for all } x^{2}+y^{2}<1 \text { and } t>0
$$

(c) Prove that the equation has at most one solution.

